A tank is a type of storage used in domestic, commercial and/or industrial settings to store water collected from surface runoff or sources such as greywater or blackwater waste streams. Once stored the water can be released in a controlled manner, and/or used to supply water demands.
There is a trend towards installing domestic rainwater tanks in urban areas to capture roof runoff and supply non-potable water demands. The benefits of using water sourced from a rainwater tank include:
• reduced reliance on potable water supply, thus deferring potable water system upgrade or expansion and increasing the security of supply from existing water sources;
• stormwater retention/detention;
• urban water quality improvement via retention and diversion of stormwater to the sewer and garden areas, thus reducing the volume of stormwater pollutants discharging to the catchment watercourses; and
• protection of urban streams, through reducing the duration of elevated flows.
Rainwater tanks are most efficient when the retained water supplies multiple water demands within a household, eg toilet flushing, garden irrigation, filling or topping-up swimming pools, clothes washing and other appropriate non-potable uses.
Tank construction
Rainwater tanks are usually constructed from plastic, or galvanised steel, and are located above-ground adjacent to the sides of a dwelling or building. Where space is limited, tanks can also be installed below-ground, under-floor and in-slab - in these situations, tanks are often constructed from concrete or impermeable plastic membranes.
Restrictions
In many areas health departments do not expressly prohibit rainwater tanks supplying drinking water, however, guidelines typically recommend avoiding drinking rainwater where a reticulated potable supply is available.
Multiple tanks
In the current version of Urban Developer, you can connect more than one tank to a supply point; however this model type is not currently supported and may give inaccurate results. If you need to model a multiple-tank installation, the best workaround is to regard the entire installation as a single tank, and adjust initial levels, first-flush volumes etc, accordingly.
Conceptually, the operation of a rainwater tank is identical to the operation of any tank-based storage infrastructure. The simulation scheme developed is generic in its applicability to all forms of tank-based storage. The tank allows for the inflow of rainwater as well as the provision of trickle top-up, triggered to start and stop at a user-specified tank level.
• Inflow: Tank inflow is usually from a roof node (page 116) or other impervious area (page 110).There is no direct input capability for "topping-up" the tank; topup is controlled by a parameter in the tank property editor (see below).
The top-up function takes water from the mains supply, however in this version, the mains supply usage due to trickle top-up is not tracked in the mains supply aggregation.
Node Outputs
• Supply out: The tank volume extracted from a Water Use (page 143) node per unit time.
Link type (page 66): Demand
• Spill: The volume flowing out of the tank when the detention volume is exceeded.
Link type (page 66): Runoff
• Detention outflow: The flow from the overflow pipe at the invert of the detention volume, during a flood event.
Link type (page 66): Runoff