Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Wetland functionality is provided in Source to allow modelling of quasi-two-dimensional situations where flow is governed by hydraulic considerations. Wetlands that may be modelled include both simple wetlands consisting of a single water body, and more complex systems such as Hattah Lakes, which consist of several interconnected wetlands. Key modelling features provided are:

  • Hydrological behaviour of perennial or ephemeral water bodies in a wetland. This includes the interaction between storage volume, groundwater seepage, rainfall, evaporation, inflow and outflow. This is modelled using the Storage node.
  • Connections within the wetland, and between the wetland and other parts of a river system. This includes inlets to and outlets from water bodies that can either be controlled (regulated) or uncontrolled (unregulated). In cases where flow is governed by head difference or may be in either direction, connections between water bodies are modelled via the Wetland Link. The Hydraulic Connector is used to model situations where the flow into or out of a wetland link is too small to have a material effect on the water level in the river. The Storage node is used when a water body, such as a lake or weir, is part of a wetland system.
  • Conservative constituents. When this modelling option is enabled for a scenario, the movement of conservative constituents such as salt can be tracked through a wetland.
  • Demand. Wetlands may have ecological, recreational, cultural or consumptive requirements. All demands, including those for wetlands, are modelled via a combination of a Water User node with the appropriate demand model, and Supply Point node(s) that associate water user demand with a physical source of supply.
Info
iconfalse
Note: Groundwater fluxes are not considered in the wetlands hydraulic solution as these have negligible effects on the outcome.

Scale

On a spatial scale, wetland functionality may apply to a single water body, or a complex system of interconnected wetlands (each made up of one or more water bodies). Every water body and connection may be modelled. Flow of water, its ownership (if relevant) and constituents through a wetland is calculated and reported at every model time-step.

Principal developer

This version of Wetland modelling has been developed by eWater CRC for Source.

Scientific provenance

The approach to wetland modelling used in Source is the Cells Model. The Cells Model was used in the formulation of the first Mekong model (Zanobetti et al 1970). This approach is employed by IQQM, which has been used in Australia for many years.

Version

Source 2.19.1

Dependencies

None. A wetland exists in a Source scenario once a Storage node is created.

Assumptions

The following assumptions and constraints apply:

  • A uniform water level (ie. level pool) is assumed across each storage compartment
  • The variation of water level and flow is assumed to be slow enough that the hydraulic conveyance can be estimated based on a quasi-steady-state assumption.
  • The response of a wetland is slow enough that all groundwater, management and ecological responses can be made based on information of the last time-step.
  • Daily or sub-daily time-step is small enough for the quasi-steady-state hydraulic response.

Wetland clusters and the "Cells model"

The group of nodes and links that represent a wetland in Source are referred to as a "wetland cluster". These can be Storage nodes, Wetland links and Hydraulic connector nodes.

Figure 1 illustrates some types of wetland that may be represented in Source by nodes in a wetland cluster:

  • A wetland without river flow (green box). Examples include upland swamps, or spring fed wetlands on a floodplain.
  • A wetland with a single water body (purple box). Examples include billabongs and oxbow lakes.
  • A complex wetland with multiple water bodies (pink box). There are multiple paths of river flow through this type of wetland. Examples include the Macquarie. Marshes, Hattah Lakes and Menindee Lakes.
Figure 1. Example wetland clusters

Cells model

In Source each wetland cluster in a scenario is treated as a modelling unit, which is processed using a Cells Model. In this type of model, a wetland consists of a number of storage cells with the movement of water between them described by a set of functions (that are specified by the modeller) and boundary conditions. The main elements of the cells model and the Source components that are used to represent them are shown in Table 1.

...

Table 2. Wetland Configuration parameters

Parameter

Description

Units

Default

Range

Max iterations

The maximum number of sets of node WSEs (trial solutions) to examine for a wetland cluster in finding an acceptable one, ie. where Precision ≤ Convergence Limit. Equation 33913 of the Flow phase section describes this further.

n/a

5

Integer > 0

Convergence limit

The upper threshold on error per node for an acceptable wetland cluster solution. At each solution iteration of a wetland cluster’s Cells Model, its Precision is compared to the square of Convergence Limit multiplied by the number of nodes in the cluster to determine whether it is acceptable (and hence the final one).

volume

1

Real number > 0

These parameters are accessed via the scenario Edit menu, and apply to all wetland clusters in the scenario.

If log diagnostics are required, there are also parameters that determine the location of the log file, the time-steps to be logged, and whether to only log those in which no acceptable Cells Model solution could be found. These parameters are described in more detail in the Source User Guide. 

Table
55
3. Location Control parameters

Parameter

Description

Units

Default

Range

Note that this information is also available in the Schematic Editor on the node’s tool tip.

 

Table
56
4. Hydraulic Connector node parameters (average inflow vs WSE)

Parameter

Description

Units

Default

Range

Average inflow rate

Average inflow rate associated with the WSE

ML/day

0

Real numbers ≥ 0

Table
57
5. Wetland link parameters

Parameter

Description

Units

Default

Range

From

Name of the node connected to the link from which outflow is given a positive value and inflow a negative value.

n/a

First node connected

Node names

To

Name of the other node connected to the link from which outflow is given a negative value and inflow a positive value.

n/a

Second node connected

Node names

Flow direction

Indicates whether flow can move in both directions

n/a

Bi-directional

Bidirectional or Unidirectional

Weighting

Represents the point at which conveyance is calculated. Determines the influence of each end of the link’s WSE on conveyance. A value of 0.5 gives each end equal weighting.

n/a

0.5

Real numbers between 0 and 1

Modified Conveyance vs Water Surface Elevation (or Reduced Level) Table

Modified conveyance

Modified conveyance for a water surface elevation

m2.5/s

0

Real numbers ≥ 0

Water surface elevation (WSE)

WSE for a modified conveyance

Elevation (m)

0

Real numbers

Flow Regulation Parameters

Flow Regulated?

Indicates whether the link is regulated.

n/a

No

Yes or No

Table
58
6. Storage node parameters

Parameter

Description

Units

Default

Range

Storage Dimensions Table: This describes a relationship between the storage’s Level, Volume and Surface Area

Level

Maximum depth of water in the storage

m

Row 1: 0
Row 2: 100

Real numbers ≥ 0

Volume

Volume of water stored in the storage

ML

Row 1: 0
Row 2:100000

Real numbers ≥ 0

Surface area

Surface area of water in the storage.

Ha

Row 1: 0
Row 2: 1000

Real numbers ≥ 0

Storage Details

Initial storage level

Initial depth of water in the storage.

Volume: Default m

100

Real numbers ≥ 0

Minimum operating level

Minimum depth of water to operate the storage at. Below this level no releases are made.

Volume: Default m

None
(not enabled)

Real numbers ≥ 0

Maximum operating level

Maximum depth of water to be kept in storage. Releases are made to attempt to ensure this depth is not exceeded.

Volume: Default m

None
(not enabled)

Real numbers ≥ 0

Rainfall and Evaporation: Used to calculate NetEvaporationws

Rainfall

Value returned by the selected time series, expression or scenario. Used to represent storage inflow/gain due to rain falling on the surface of the water stored.

distance/time: Default mm/day

0

Real numbers

Evaporation

Value returned by the selected time series, expression or scenario. Used to represent storage outflow/loss due to evaporation from the surface of the water stored.

distance/time: Default mm/day

0

Real numbers

Seepage Table: Used to calculate Groundwaterws

Level

Depth of water in storage associated with the rate of seepage.

Distance:
Default: m

Row 1: 0

Real numbers ≥ 0

Seepage

Rate of seepage associated with a depth of water in storage.

Volume/time:
Default: m3/s

Row 1: 0

Real numbers

Outlet Level versus Discharge Tables: Used to calculate fSpillo(WSEws) and fomax(WSEws)

Level

Depth of water in storage associated with a discharge rate.

m

Row 1: 0

Real numbers ≥ 0

Use of these parameters is described in Storage Nodes (Cells). For a full list of Storage Node parameters, see the Source User Guide.

Output data

Output data is viewed using the Recording Manager. The recorded attribute values (results) are reported for each time-step of the model run. Result Results relevant to wetland Cells Model processing are summarised in the following tables:

Table
59
7. Wetland cluster (Cluster solver) attributes

Attribute

Description

Units

Range

Iterations

Number of solutions (sets of storage node WSE) that were tried for the time-step before one was found with acceptable (ie. Precision ≤ Convergence Limit) or the maximum iteration limit was reached. See Equation 339 under 13.

n/a

Integer, between 0 and the Maximum Iterations setting for Wetlands on the Edit menu.

Table
60
8. Storage node attributes

Attribute

Description

Units

Range

Cell mass balance error

Value returned from the storage node’s Cells Model mass balance equation, described under Storage Nodes (Cells). This result comes from the final trial solution for the wetland cluster in each time-step.

Volume

Real number.

Table
61
9. Hydraulic connector node attributes

Attribute

Description

Units

Range

Average Reduced Water Level

Elevation at the surface of the water at the point in the river represented by the hydraulic connector node. This is based on the upstream inflow rate.

Elevation:
Default m

Real number.

Conveyance flux

Rate of flow (or flux) to/from the wetland(s) connected to the river at the hydraulic connector node.

Volume/time:
Default ML/day

Real number

Table
62
10. Wetland link attributes

Attribute

Description

Units

Range

Average flow rate

Rate and direction of flow in the wetland link. See Qc in the Wetland Links (Connectors).

Volume/time:
Default ML/day

Real number.

Total flow volume

Total volume and direction of flow in the link over the time-step. Equals Average flow rate multiplied by time-step length.

Volume
Default ML

Real number.

Average reduced water level

Elevation of the water surface at the point at which the link’s conveyance is calculated; WSEc) described in Wetland Links (Connectors)

Elevation:
Default m

Real number. Should be between From node reduced level and To node reduced level.

From node reduced level

Elevation of the water surface, calculated by the cluster solver, at the end of the link configured to be upstream by default.

Elevation:
Default m

Real number

To node reduced level

Elevation of the water surface, calculated by the cluster solver, at the end of the link configured to be downstream by default.

Elevation:
Default m

Real number

Target flow

Maximum permitted flow rate on the link. Also indicates the permitted flow direction. See the sub-section in Wetland Links (Connectors).

Volume/time:
Default ML/day

Real number

For a full list of output data for wetland nodes and links, refer to the Source User Guide.

Reference list

Zanobetti, D., Lorgeré, H., Preissmann, A., & Cunge, J.A., 1970, Mekong Delta mathematical model program construction, J. Waterways and Harbors Division, American Society of Civil Engineers, vol.96, no.2, pp.181-199.