...
A more formal specification of the cost calculation is:
Equation 1 |
---|
Recall that negative costs are incentives. Accordingly, in this table, the greatest incentive is to retain any water in the bottom-most 10% of the capacity of the storage (for carry-over to the next time-step), followed by the water in the next 40% of the capacity of the storage. By interleaving base costs and increment values, releases from multiple storages can be controlled quite precisely to maintain a desired balance.
...
Table 3. Storage targets (data file format)
Row | Column (comma-separated) | |||
---|---|---|---|---|
1 | 2..13 | |||
1 | Storage | month | ||
2..n | sname | cname |
...
To ensure that the above are met, you can configure each of the branches with a cost incentive. In a maximum flow constraint node that is immediately below the controlled splitter on one side of the stream, this will ensure that the flow rules are met. The maximum flow constraint should be configured with parallel arcs with either a cost for flowing water down the effluent or a cost incentive for flowing water down the main stream. The cost should be small, to ensure that the overall cost structure of the network is not impacted too much. Figure 12 shows 9 shows an example of this.
Info | ||
---|---|---|
| ||
Note: Ensure that the forecast supply is greater than the total order size. If this is not the case, the following error message will occur at the first node that this occurs at: Forecast supply greater than total order size in interpretation of network LP. Try checking inflow forecasts at inflow nodes, and that all confluence inputs are defined to be regulated. |
Inspecting an arc-node network (simple)
...