Base layers and data | Common data formats | Description and use |
---|
Digital Elevation Model (DEM) | Grid | A pit-filled DEM is used to compute the sub-catchment boundaries and node-link networks. Source can automatically generate sub-catchment boundaries according to a user-specified minimum drainage area (stream threshold) and flow gauging station positions. Selecting a small minimum sub-catchment area value will generate a large number of sub-catchments. This will increase the size of the project and run-time. |
Sub-catchment map | Grid | A sub-catchment map can be used in place of a DEM. This defines the sub-catchment boundaries within Source. You then need to draw the node-link network for the catchment. |
Functional Unit (FU) map | Grid | A functional unit (FU) map divides the sub-catchment into areas of similar hydrological behaviour or response (eg. land use). Source uses FU maps to assign functional unit areas. The FU map needs to have the same projection and resolution as the DEM or sub-catchment map (but it can have different extents, provided the FU map at least covers the extent of the sub-catchment defined by the modeller. |
Gauging station nodes | Point | Optionally, a shape file or ASCII text file that lists the gauging station coordinates, and an identifier such as gauge name or number that is used to define gauging station nodes. The coordinates of the gauges need to be in the same proejction as the DEM or sub-catchment map. Image Modified Incorporating the location of gauging stations as nodes can be particularly useful when calibrating the rainfall runoff model at a gauge. |
|
Rainfall and PET data | Grid or time series | Rainfall and potential evapotranspiration (PET) time series are used as inputs to the rainfall-runoff models. The most commonly-used files are SILO daily rainfall-runoff and PET ASCII grids. Using a daily ASCII grid format allows you to update the rainfall data at a later stage and re-run the model. Table 39 shows the format of the input data required. If local data is available, you can also attach your own rainfall data files to rainfall runoff models for each FU within a sub-catchment. |
Point source data (if storages are to be modelled) | Time series | Outflow and/or constituent data. The time series needs to have the same time-step, an should be run for at least the same duration, as the climate or flow inputs to the model. |
Storage details (if storages are to be modelled) | Time series | Includes coordinates, maximum storage volume, depth/surface area volume relationship, observed inflow and outflow data, losses, extractions, release rules, dam specifications, gates, valves, etc. |
Stream network layer (optional) | Polyline | Image Modified A stream network layer ensures the node-link network you build over the sub-catchment map is correct. You can then check the accuracy of the DEM generated sub-catchment map. |
|
USLE (Universal Soil Loss Equation) and/or gully density layers (optional) | Grid | Can be used to spatially vary EMC/DWC values in the constituent generation process (use the Scale EMCs and DWCs with the Hazard Map constituent generation method available through the /wiki/spaces/SD520/pages/55214122 plugin). The layers need to have the same projection and resolution as the DEM or sub-catchmetn map (but can have different extents). |