Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Overview

Description and rationale

...

NoRequirement
1Ownership of water can be assigned, tracked and reassigned. 
1.1Ability to specify initial ownership of water at each location (all water must be assigned to an owner)
1.2Ability to specify the transfer of ownership at a location, represented as a node in the river network.
1.3Borrow and payback is supported, where owners share surpluses to owners that cannot meet their requirements, and can be paid back later.
1.4

In every model component, ownership is conserved when it is not explicitly transferred or exchanged, i.e. the following volume equation holds for each owner o:

ΔStorageo = Inflowo - Outflowo - Diversiono - Losso + Gaino + Borrowedo - Lento

2Ownership tracking works for a range of time steps e.g. sub-daily, daily.
3Delivery of each owner’s orders may be constrained by their share of inflow and storage volume, and delivery capacity.
4

The equation governing ownership in storages is for an owner o:

ΔStorageo = Inflowo - RegulatedReleaseo - Cededo - FixedLosso - ProportionalLosso - InternalSpillo - ExternalSpillo + Borrowedo - Lento

5Owners can cede (give) water to other owners in a storage.
5.1The modeller can configure rules that determine when ceding is to take place and how much water to cede from one owner to another owner.
6Storage losses and gains (evaporation, precipitation, groundwater infiltration) are shared between owners according to user-configured rules.
6.1Storage losses and gains can be shared proportionally, or according to fixed ratio
6.2When storage losses and gains are shared proportionally, owners are assigned  a share in proportion to the volume of their water in storage.
6.3When storage losses and gains are shared in a fixed ratio, the modeller configures each owner’s percentage share
7Owners are assigned fixed shares of storage capacity in which to store their water.
7.1The modeller can configure each owner’s share of storage capacity.
8The modeller can configure whether ‘internal spilling’ between owners occurs within a storage. 
8.1When ‘internal spilling’ is configured, owners must transfer the volume of their water that is in excess of their share of storage capacity (the internal spill) to all other owners with ‘airspace’.
8.2When ‘internal spill’ is transferred from an owner, every other owner receives  a share in proportion to their share of storage capacity, but limited by their ‘airspace’.
9An owner’s share of external spill (release volume in excess of demand) is determined by their share of start of time step storage volume, inflow, regulated release and storage capacity.
10Storage owner shares can be temporarily overridden and restored later (e.g. Lake Menindee).
10.1When storage shares are overridden, they are reassigned to a single owner, and all inflows, losses/gains, releases and spills belong to this owner.
10.2The modeller can configure the conditions under which the override occurs, and the owner to which shares are reassigned.
10.3When storage shares are restored after an override period, the borrow accounts must be restored to their pre-override balance.
11Owners are assigned a share of the capacity of each of the storage’s outlet paths according to user configured rules.
11.1Outlet path capacity can be shared proportionally, or according to fixed ratio
11.2When outlet path capacity is shared proportionally, owners are assigned a share in proportion to the volume of their water in storage.

...

Therefore, for an owner, i, the continuity equation gives for a time step:

Equation 1

where:

Vi2 - Owner ’s volume of water in the reservoir this time step.

Vi1 - Owner ’s volume of water in the reservoir last time step.

Ii - Volume of inflow this time step belonging to owner i.

Ci - Net volume of water ceded by owner i this time step to all other owners, negative if this owner has ceded less water to other owners than received.

Pi - Proportional loss attributed to owner i, negative if a gain.

Fi - Fixed loss attributed to owner i, negative if a gain.

ISi - Net internal spill of owner i, negative if spill into owner’s share.

ESi - External spill for owner i.

Bi - Total borrowed from other owners by owner i, negative if the owner is lending to other owners.

Ri - Volume of regulated water released this time step for owner i.

...

If the reservoir is empty, this equation is modified to account for proportional gains (such as rainfall) that could be released, or that have dried up the reservoir over the period considered:

Equation 3

where:

ri - Owner i’s ratio share of the reservoir’s storage capacity.

P - Total proportional loss, negative if a gain.

...

Using the borrow method described in Borrow and Payback - SRG  Bi for each owner can be calculated. Any owner that had to borrow will have Vi= 0. 

Bi = Borrowedi - Lenti

Info
iconfalse
Note: Borrow account balances are updated for borrowing in storages, except when ownership is suspended (see section on Suspension of Ownership).

...

  1. Accumulate amount the owner owes other owners at the priority level:

    Equation 7
  2. If the owner  has borrowed from any other at the priority level ( (CanPayback(pl, i) > 0):
    1. Calculate the ratio to limit the owner’s payback to their current ability to repay:

      Equation 8
    2. For every other owner OtherOwner that shares with owner i at the priority level:
      1. Calculate the payback to the other owner using the ratio above

        Equation 9
      2. Update the borrow record for the payback to the other owner

        Equation 10
        Equation 11
      3. Adjust current time step borrow totals for the payback:

        Equation 12
        Equation 13
      4. Update the surplus remaining to be shared at the next priority level down:

        Equation 14

Forfeiture of credit 

If a reservoir is a payback storage, a check is made to ensure that no owner’s credit owing to them exceeds their capacity to store it. If any owner has more water owed to them than they have remaining airspace, the excess is forfeited back to the debtors in order of priority. This methodology is similar to that used for calculating payback, but in this case the forfeits run in the opposite direction to the repayments.

...

Each owner is entitled to use a fixed proportion of the proportion** of the storage capacity of a reservoir (ri) which means that at any time its storage cannot exceed:

Info
iconfalse
** Owners that have a share of the reservoir which floats on top of the other owners will have to be dealt with later. If an owner doesn’t have any storage capacity (ri = 0) then its water will internally spill to those owners that do.
Equation 23

where:

Vimax - Owner i’s maximum allowed volume of water in the reservoir this time step.

ri - Owner i’s ratio share of reservoir storage capacity.

Vmax - Storage capacity of reservoir.

V2 - Storage volume of reservoir this time step.

...

Proportional gain P is distributed in an iterative process. Initially the proportional gain remaining to be distributed (Prem) equals the total P, and every owner’s spill Spilli is zero. Prem is distributed until there are no more owners that will spill. This process is outlined below:

  1. A total of the estimated unassisted storage volumes is calculated:
    Image Modified

    Info
    iconfalse
    Note: This is using the notation suggested by Knuth (1992 [http://arxiv.org/abs/math/9205211v1]). Essentially it’s saying that the summation is for all of the terms where the conditions in the square brackets are true. So [Spillj ≤ 0] indicates that we want the summation of Vjest for all j where Spilli is less than or equal to zero.
  2. For each owner not already identified as spilling (Spillj ≤ 0) we calculate an initial estimate of their spill volume totals:

    Equation 27
  3. If an owner is discovered to be spilling (Spillj > 0), the remaining proportional gain is updated:

    Equation 28
  4. And a final estimate of total spill calculated:

    Equation 29
  5. If during this pass any owners are discovered to be spilling then it is necessary to return to equation (27) and keep repeating the process until no more spilling owners are discovered.

...

The current share of water in storage for each owner is saved when the result of the override function transitions from “false” to “true”, which is when the suspension is activated (If the reservoir is empty then V = 0 and Sharei = ri.):

Equation 51

where:

ri - Owner i’s ratio share of the reservoir’s storage capacity.

Vi - Owner i’s volume of water in the reservoir.

V Total volume stored in the reservoir.

...

When the result of the override function transitions from “true” to “false”, that is the suspension is deactivated, each owner’s share of water in storage is reset to represent what it was before the suspension started:

Vi = Sharei × V

The owners’ shares of the storage capacity (ri) are restored to the values they were before the suspension started.

...

As ownership is calculated after the physical reservoir model has been run the volume of water that was released from the reservoir in the current model time step is known:

Equation 54

where:

R - The total volume released from the reservoir this time step.

Rp - The total volume released from the reservoir this time step down outlet path p.

...