...
Routing Parameter | Description | Units | Range | Default |
---|---|---|---|---|
# Divisions | Number of reach divisions. Conceptually, this parameter describes the number of times that a reach is replicated. The effective length of a reach is determined from its behaviour, which is controlled by the combination of the storage exponent m, the inflow bias x and the storage constant K. Specifying multiple reach divisions implies applying the same set of behavioural parameters multiple times. In other words, if the effective length of a single-division reach is 500 metres (as derived from its behavioural parameters), changing the # Divisions parameter to 2 implies a combined effective length of 1000 metres. If you want to sub-divide a 500 metre reach into two 250 metre sections, you must also change the behavioural parameters to achieve this. | whole units | integer ≥ 1 | 1 |
Inflow bias (attenuation factor, x) | The weighting factor x is used to adjust the bias between inflow and outflow rate and allows for flow attenuation. The weighting factor is usually in the range 0 ≤ x ≤ 0.5 (Davis and Sorensen, 1969). A recommended starting value is 0.2. | dimensionless | real 0 ≤ x ≤ 1 | 0 |
Storage constant (k) | When using linear routing (m = 1), the units of the storage constant k are in seconds and the wave travel time is equal to k times the number of divisions. When using non-linear routing (m ≠ 1), a starting value could be calculated using Equation XX Equation 20 in the Appendix -B. | k units | real ≥ 0 | 0 |
Storage exponent (m) | If m=1, linear (Muskingum) routing is implied, otherwise non-linear routing is implied. m=0.74 is a good starting value for a natural channel. | time-steps | real 0 < m ≤ 1 | 0 time-steps |
...