Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

The information that users may provide is summarised in the Table below. Note that there is also a global requirement to specify the model time-step, dt. In addition, of course, data on the inflow to the routing link is required for each model time-step.

Parameters

Length of routing reach

Initialisation Type (governs whether an initial value of storage or an initial value of flow is entered)

Initial value of storage

Initial value of flow (note this is mandatory for Lagged Flow)

Number of routing divisions in the linkRepresentative flow rate (to calculate link delivery time)

x , the weighting factor in routing

The storage delay constant, k, if m≠1 or the Muskingum K, if m=1, in the routing equation

m, the exponent in the routing equation

Flow versus travel time relationship

Governing data for fluxes (reach processes) - details below

Data needs for lateral fluxes (reach processes)

For the net evaporation flux, FluxNE, the additional data requirements are:

  • A monotonically increasing rating curve relating a representative average stream width to flow. The average width should be such that when multiplied by the length gives the surface area of the reach;
  • A time series of evaporation; and
  • A time series of precipitation.

If groundwater exchanges, FluxGW, are to be modelled then a monotonically increasing rating curve relating head (or water level) to flow is required. Data for the groundwater model being used is also required (see the chapter on Groundwater modelling for details).

For the general purpose (function) flux, Fluxflow, a piecewise monotonically increasing relationship between flux and flow is required.

For the general purpose (time series) flux, FluxTS, a time series of losses and/or gains is required for each Owner in the system being modelled. Data required for Owners is discussed in the chapter on Ownership.

Parameters or settings

Information on the meaning and function of each parameter, whether it is a "physical" parameter or otherwise, and its units can be found in the Theory section above. Where applicable, information on default values and the range of valid values can also be found in the Theory section.

Sensitivity of parameters

Clearly, which parameters are the most sensitive depends on the routing option being used. For Storage Routing, the parameters that are relevant from the point of view of sensitivity depend on whether the stream is flowing or it has ceased to flow and, if it is flowing, whether the power function or piecewise routing is being used.

When the stream has ceased to flow, results can be sensitive to the total volume of dead storage specified and to values of parameters defining the fluxes affecting the draw down of this storage. Depending on the fluxes being modelled, sensitive parameters include the adopted routing link length and the adopted shape of the representative cross section of the routing link (ie. as expressed in relationships for width versus flow and/or depth versus flow). Results will also be influenced by other input data, including evaporation and precipitation data if net evaporation is modelled, and the configuration of the groundwater model if groundwater fluxes are modelled.

When the stream is flowing, irrespective of whether the power function or piecewise routing is being used, results can also be sensitive to the adopted routing link length and the adopted size and shape of the representative cross section of the routing link (noting that deciding on this can be problematic when the geometry of the cross section along the link is highly variable). When the power function is being used, results can be sensitive to the choice of values of k (or K), m, and x, which in turn are affected by the routing link length, the characteristics of the representative cross section and the friction characteristics of the routing link, and assumptions made about these. When the lookup table option (variable parameter Muskingum routing) is being used, results can be sensitive to the adopted values of travel time, especially the maximum travel time, and travel time is also affected by routing link length, cross section size, shape and variability, and friction characteristics.

As for the case where the stream has ceased to flow, when the stream is flowing results may also be sensitive to values of the parameters defining the fluxes being modelled. The degree of sensitivity will depend on the magnitudes of these fluxes relative to the magnitudes of the flows and reach storage. A circumstance where the results could be expected to be most sensitive to these fluxes would be near cease to flow.

Valid ranges of values of parameters

Reiterating the section on "Form of the Routing Equation", by choosing the appropriate functional form and appropriate values of m and x the following hydrologic routing methods can be replicated:

  • Linear Muskingum routing (power function with 0 ≤ x < 1 and m=1)
  • Non-linear reservoir routing (power function with x=0 and m>0)
  • Non-linear Muskingum routing (power function with 0 < x ≤ 1 and m>0)
  • Variable parameter Muskingum (BigMod) routing (lookup table)

Values of m such that m>1 are possible for natural channels (see for example, Bates and Pilgrim, 1982; however, such values would typically only occur for overbank flows). Other studies (eg. Wong and Laurenson, 1983, 1984) show that values of m such that m<1 also occur for natural channels, and highlight that the validity of assuming constant values of m and k apply over the full flow range is fairly tenuous for natural channels. The assumption is reasonable for regular geometric shapes though (eg. trapezoidal and triangular cross sections), as found by Mein et al (1974).

From the above list it may be seen that the valid range of values of x is 0 ≤ x ≤ 1. More information on the valid range of values of K is given in the section on "Stability Criteria".

It is also worth noting that as the flow rate approaches zero, travel time is going to get longer (potentially approach the infinite). However, when the power function is used the maximum travel time (encapsulated in K) allowable in the routing method is governed by the stability criteria, where Kmax = dt/x for 0 < x ≤ 1, as discussed in the section on "Stability Criteria" (also recalling particularly that when m=1, travel time (K) is constant over the full flow range).

For the lookup table option (ie. variable parameter Muskingum routing), where the maximum travel time in the lookup table input by the user is used to determine the number of routing divisions needed to ensure stability, it may often be appropriate to truncate the travel time in the low flow region by specifying a constant value of travel time for all flows below a minimum threshold (ie. effectively use linear Muskingum routing for low flows).

Information on evaluating k (or travel time or K), x and m is given in a number of sources such as Pilgrim (1987). It is worth noting that when discussing storage-discharge relationships, Pilgrim (1987: eg equation 7.4) refers to the term Image Removed being a "representative discharge for a reach" and this is the same as the index flow used here. Pilgrim (1987: Figure 7.21) also recasts the wave speed-discharge relationship developed by Wong and Laurenson (1983, 1984) into a relationship between time of travel of flood peak and discharge, which is more relevant to the way routing in MUSICX would be typically applied. However, note that the discussion of aspects such as stability criteria by Pilgrim (1987) applies to the implicit Heun scheme and not the implicit Euler scheme used in MUSICX.

Output data

Outputs include time series of link outflows and modelled fluxes.

References

Bates, B.C. and Pilgrim, D.H. (1982) Investigation of storage-discharge relations for river reaches and runoff routing models. Proc. Hydrology and Water Resources Symposium. Melbourne, 11-13 May: 120-126. Institution of Engineers, Australia.

Brutsaert, W. (2005) Hydrology - an introduction. Cambridge University Press, Cambridge.

Clark, M.P. and Kavetski, D. (2010) Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resources Research, 46, W10510, doi:10.1029/2009WR008894.

Koussis, A.D. (1978) Theoretical estimation of flood routing parameters. J. Hydraul. Div. Am. Soc. Civ. Eng., 104(HY1): 109-115.

Koussis, A.D. (2009) Assessment and review of the hydraulics of storage flood routing 70 years after the presentation of the Muskingum method. Hydrological Sciences Journal, 54(1): 43-61. February.

Laurenson, E.M. (1959) Storage analysis and flood routing in long rivers. Journal of Geophysical Research, 64(12): 2423-2431, doi:10.1029/JZ064i012p02423.

Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. (1949) Applied Hydrology. McGraw Hill, New York.

McCarthy, G.T. (1938) The unit hydrograph and flood routing. Manuscript presented at a conference of the North Atlantic Division, US Army Corps of Engineers, 24 June 1938 (unpublished)

...

Parameters or settings

Information on the meaning and function of each parameter, whether it is a "physical" parameter or otherwise, and its units can be found in the Theory section above. Where applicable, information on default values and the range of valid values can also be found in the Theory section.

Valid ranges of values of parameters

Reiterating the section on "Form of the Routing Equation", by choosing the appropriate functional form and appropriate values of m and x the following hydrologic routing methods can be replicated:

  • Linear Muskingum routing (power function with 0 ≤ x < 1 and m=1)
  • Non-linear reservoir routing (power function with x=0 and m>0)
  • Non-linear Muskingum routing (power function with 0 < x ≤ 1 and m>0)

Values of m such that m>1 are possible for natural channels (see for example, Bates and Pilgrim, 1982; however, such values would typically only occur for overbank flows). Other studies (eg. Wong and Laurenson, 1983, 1984) show that values of m such that m<1 also occur for natural channels, and highlight that the validity of assuming constant values of m and k apply over the full flow range is fairly tenuous for natural channels. The assumption is reasonable for regular geometric shapes though (eg. trapezoidal and triangular cross sections), as found by Mein et al (1974).

From the above list it may be seen that the valid range of values of x is 0 ≤ x ≤ 1. More information on the valid range of values of K is given in the section on "Stability Criteria".

It is also worth noting that as the flow rate approaches zero, travel time is going to get longer (potentially approach the infinite). However, when the power function is used the maximum travel time (encapsulated in K) allowable in the routing method is governed by the stability criteria, where Kmax = dt/x for 0 < x ≤ 1, as discussed in the section on "Stability Criteria" (also recalling particularly that when m=1, travel time (K) is constant over the full flow range).

Output data

Outputs include time series of link outflows.

References

Bates, B.C. and Pilgrim, D.H. (1982) Investigation of storage-discharge relations for river reaches and runoff routing models. Proc. Hydrology and Water Resources Symposium. Melbourne, 11-13 May: 120-126. Institution of Engineers, Australia.

Brutsaert, W. (2005) Hydrology - an introduction. Cambridge University Press, Cambridge.

Clark, M.P. and Kavetski, D. (2010) Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resources Research, 46, W10510, doi:10.1029/2009WR008894.

Koussis, A.D. (1978) Theoretical estimation of flood routing parameters. J. Hydraul. Div. Am. Soc. Civ. Eng., 100: 1507-1518104(HY1): 109-115.

PerumalKoussis, MA.D. (20102009) Discussion of " Assessment and review of the hydraulics of storage flood routing 70 years after the presentation of the Muskingum method". Hydrological Sciences Journal, 55(8): 1427-1430flood routing 70 years after the presentation of the Muskingum method. Hydrological Sciences Journal, 54(1): 43-61. February.

Laurenson, E.M. (1959) Storage analysis and flood routing in long rivers. Journal of Geophysical Research, 64(12): 2423-2431, doi:10.1080/02626667.2010.491260.Pilgrim, D1029/JZ064i012p02423.

Linsley, R.K., Kohler, M.A. and Paulhus, J.L.H. (1987) Flood routing. Chapter 7 in Pilgrim, D.H. (ed): Australian Rainfall and Runoff - a guide to flood estimation. Vol 1. Institution of Engineers, Australia, Barton, ACT. ISBN: 085825 434 4.

Wong, T.H.F. and Laurenson, E.M. (1983) Wave speed-discharge relations in natural channels. Water Resources Research, 19(3): 701-706, doi:10.1029/WR019i003p00701.

Wong, T.H.F. and Laurenson, E.M. (1984) A model of flood wave speed-discharge characteristics of rivers. Water Resources Research, 20(12): 1883-18901949) Applied Hydrology. McGraw Hill, New York.

McCarthy, G.T. (1938) The unit hydrograph and flood routing. Manuscript presented at a conference of the North Atlantic Division, US Army Corps of Engineers, 24 June 1938 (unpublished)

Mein, R.G., Laurenson, E.M. and McMahon, T.A. (1974) Simple non-linear model for flood estimation. J. Hydraul. Div. Am. Soc. Civ. Eng., 100: 1507-1518.

Perumal, M. (2010) Discussion of "Assessment and review of the hydraulics of storage flood routing 70 years after the presentation of the Muskingum method". Hydrological Sciences Journal, 55(8): 1427-1430, doi:10.1029/WR020i012p018831080/02626667.2010.491260.


Bibliography

Gill, M.A. (1978) Flood routing by the Muskingum method. Journal of Hydrology, 36: 353-363.

...