Bioretention systems (also known as biofiltration systems or raingardens) promote the filtration of stormwater through a vegetated filter media (NOTE: whilst the user has the option to specify a non-vegetated system, it is strongly recommended that bioretention systems always be vegetated). Non-vegetated systems will generally give poor water quality outcomes and are more likely to clog prematurely. The type and composition of filter medium determines the effectiveness of the pollutant removal, as does the choice of vegetation.
...
Evapotranspiration losses
The method of calculating evapotranspiration from bioretention systems has been enhanced. In the previous version of MUSIC, evapotranspiration was a function of soil moisture and a term, Emax, which is used to describe the maximum daily evapotranspiration rate. The Emax value was derived from experiments using biofilter columns planted with Carex appressa, and was applied as a constant rate. More recently, field experiments on biofilters (see for example Hamel et al. 2011 and 2012) have enabled the MUSIC team to develop a more sophisticated and precise prediction of evapotranspiration, taking into account seasonal variation. We have done this by developing a ratio between potential evapotranspiration (PET) and the measured ET. This scaling factor has then been used to develop a seasonally-adjusted Emax figure on a monthly basis, such that: Emaxj = scaling factor * PETj, where Emaxj is the Emax value for month j, and PETj is the potential evapotranspiration for month j.
...
The change means that MUSIC will provide more accurate predictions of evapotranspiration and can thus provide more precise information on the impact of biofiltration systems on the water balance and flow regime.
Pollutant Removal through the Filtration Medium
In MUSIC, the pollutant removal performance through the filtration medium is based on the extensive research undertaken on bioretention systems in Australia by the Facility for Advancing Water Biofiltration (FAWB); see www.monash.edu.au/fawb. The treatment performance is governed by a series of functions, which determines outflow concentrations and/or removal rates for TSS, TP and TN .The function takes into account all important characteristics of the bioretention system and its operating conditions, including:
- Choice of vegetation (vegetated with effective nutrient removal species, vegetated with ineffective nutrient removal species, unvegetated);
- Amount of exfiltration (presence of lining, etc);
- Presence of a submerged zone (which helps promote denitrification and also helps to ensure that the media does not dry out during long dry periods, the latter has been shown to result in leaching of nutrients upon rewetting of the media); and
- Presence or absence of an underdrain.
For more information, please refer to the see the section on Modelling Bioretention System Treatment Performance, where a full description is provided.
...
icon | false |
---|
NOTE: Advanced Properties are uneditable by default. You can make it editable for each project by clicking on Edit and Project Options. This will present you with a Project Options Screen as displayed below:
...
Info | ||
---|---|---|
| ||
NOTE: Advanced Properties are uneditable by default. You can make it editable for each project by clicking on Edit and Project Options. This will present you with a Project Options Screen as displayed below: Now, click on MUSICX Treatment Node Settings and tick on Editable as shown above. |
Pollutant Removal through the Filtration Medium
In MUSIC, the pollutant removal performance through the filtration medium is based on the extensive research undertaken on bioretention systems in Australia by the Facility for Advancing Water Biofiltration (FAWB); see www.monash.edu.au/fawb. The treatment performance is governed by a series of functions, which determines outflow concentrations and/or removal rates for TSS, TP and TN .The function takes into account all important characteristics of the bioretention system and its operating conditions, including:
- Choice of vegetation (vegetated with effective nutrient removal species, vegetated with ineffective nutrient removal species, unvegetated);
- Amount of exfiltration (presence of lining, etc);
- Presence of a submerged zone (which helps promote denitrification and also helps to ensure that the media does not dry out during long dry periods, the latter has been shown to result in leaching of nutrients upon rewetting of the media); and
- Presence or absence of an underdrain.
For more information, please refer to the see the section on Modelling Bioretention System Treatment Performance, where a full description is provided.