Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


This is a simplification of the full momentum equation and assumes that diffusion and dynamic effects are negligible. The method uses index flow in flux, storage, and mass balance equations. A weighting factor is used to adjust the bias between the inflow and outflow rate, hence allowing for attenuation of flow. The storage routing equation is shown below, and some of its terms are represented diagrammatically in the Figure below.

Equation 1
Image Modified

where:

S is the storage in the reach,

...

q~ is the index flow, which is given by


Equation 2

Image Modified

where:

I is the inflow to the reach during the time-step,

...

  • For linear routing (ie m=1) k is equal to the wave travel time divided by the number of divisions. The wave travel time is how long the wave takes to move through the reach
  • For non-linear routing, (m≠1) k can be calculated using the known wave travel time for the reach and the chosen value of m for a representative flow rate
Equation 3

Image Modified

where:

Tw is the known travel time for the reach in seconds

...

Figure below shows the feature editor for storage link routing and Table below outlines the parameters required.

Routing ParameterDescriptionUnitsRangeDefault
General configurationInitial conditionsRouting parameters
If necessary, one of these parameters may be used to seed a reach with either an initial flow or storage (see below) so that reach behaviour is fully defined from the first model time-step.

# Divisions

Number of reach divisions. Conceptually, this parameter describes the number of times that a reach is replicated. The effective length of a reach is determined from its behaviour, which is controlled by the combination of the storage exponent m, the inflow bias x and the storage constant K. Specifying multiple reach divisions implies applying the same set of behavioural parameters multiple times. In other words, if the effective length of a single-division reach is 500 metres (as derived from its behavioural parameters), changing the # Divisions parameter to 2 implies a combined effective length of 1000 metres. If you want to sub-divide a 500 metre reach into two 250 metre sections, you must also change the behavioural parameters to achieve this.whole unitsinteger ≥ 11
Inflow bias (attenuation factor, x)The weighting factor x is used to adjust the bias between inflow and outflow rate and allows for flow attenuation. The weighting factor is usually in the range 0 ≤ x ≤ 0.5 (Davis and Sorensen, 1969). A recommended starting value is 0.2.dimensionlessreal 0 ≤ x ≤ 10
Generic
Storage constant (k)When using linear routing (m = 1), the units of the storage constant k are in seconds and the wave travel time is equal to k times the number of divisions. When using non-linear routing (m ≠ 1), a starting value could be calculated using Equation XX in the Appendix.k unitsreal ≥ 00
Storage exponent (m)If m=1, linear (Muskingum) routing is implied, otherwise non-linear routing is implied. m=0.74 is a good starting value for a natural channel.time-stepsreal 0 < m ≤ 10 time-steps


References

Davis, C.V., and K.E. Sorensen (1969) Handbook of Applied Hydraulics, 3rd Edition, C.V. Davis and K.E. Sorensen (eds). McGraw-Hill.