...
Allison et al. (1998) sampled gross pollutants during storm events within an urban catchment in Coburg, which is a suburb of Melbourne. The catchment had an area of approximately 150 ha, with a mixture of land uses including, residential, commercial/residential and light industrial. The conclusions from this sampling indicated that:
As part of their study, Allison et al. (1998) collected data on the amount of gross pollutants collected during ten clean-outs of a CDS gross pollutant trap device in Melbourne. A total of 13 rainfall events occurred during the ten clean-outs of the CDS device. The device was located at the outlet to a 50 ha catchment in Coburg. As with the previous sampling, organic matter constituted the largest component of the gross pollutants collected in the CDS device.
...
The default relationships provided by music when creating a gross pollutant trap node are one-to-one relationships where the outflow concentration is equal to the inflow concentration. The user can modify these default relationships by clicking and dragging relevant points on the transfer function graphs, as described in treatment+devices>Treatment Treatment Devices. In this way the user is able to define the specific capture efficiency for the particular contaminant for the device being modelled. Allison et al (1998) have shown that the capture rate for different gross pollutant trap devices can vary depending on the type of device installed.
...