...
Rachel Blakers, Andrew Davidson
Version
Source v4.1
Availability/Conditions
The Exponential Decay model is automatically installed with Source. For Lumped constituent routing, it can be applied to constituents in:
...
|
where M0 is the initial quantity.
...
where Mt is the constituent mass at the end of time step t, Vt is the storage volume at the end of time step t, and is the time step size. Equation 7 assumes that flux rates are constant during a time step and that the storage volume at the end of the time step is representative of the volume during the time step. It is more convenient to express the change in constituent mass with respect to the half-life h. An expression for the half-life can be derived for Equation 7 as:
Equation 8 |
Using the above expression, we can then express Equation 7 in terms of the half-life rather than the decay constant:
|
Equation 9 forms the basis of the Exponential Decay model in Source. The solution becomes less accurate as the half-life becomes smaller (particularly if the half-life is smaller than the time step) and as the flushing rate (Qout /Vt+1) becomes larger. It also follows from Equation 9 that if Vt+1 = 0 then Mt+1 = 0.
Trend Concentration and Percent Reduction%
This function allows to decay concentration and then remove the certain percentage of the constituent. The basic formula is the equation 9.
Trend Concentration
It considers two conditions:
(i): Trend Concentration < Concentration at the begging of time step:
Where:
M'(t+1) is the constituent mass after the process of Trend Concentration
A= V* TrendConcentration is the total mass for the task concentration.
(ii): Trend Concentration > Concentration at the begging of time step
Percent Reduction%
The function will remove the input percent value directly from the processed constituent mass.
Where:
C’(t+1) is the constituent concentration at the storage after the process of Trend Concentration
M’’(t+1) is the sum of the constituent mass after the process of Trend Concentration and in the outflow
M(t+1) is the final constituent mass after the process of Trend Concentration and Percent Reduction.
Example
If the half-life is equal to the time step, then the constituent mass after one time step will be equal to one half of the previous mass (ignoring losses and gains from outflows and inflows). For example, consider a half-life of h = 1 day, a daily time step, zero inflows and zero outflows. Equation 9 tells us that, after 1 day, the constituent mass will be:
...
Parameter | Description | Units | Default | Range |
Half-life | The half-life of the constituent | seconds | 86400 (equivalent to 1 day) | 0 to ∞ |
Percent Reduction | A percent value that the user wishes to remove directly from the processed constituent | % | 0 | 0 to 100 |
Trend Concentration | The concentration to trend down to | mg/L | 0 | 0 to ∞ |
Outputs
A time series of stored constituent mass.
...