Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Irrigator operates on a daily basis generating demands and extracting water to meet these demands via the water user and supply nodes. Irrigator maintains a daily water balance for each cropping area during its planting season, to calculate the daily soil water deficit and an irrigation requirement. The irrigation requirements are used by the Water User to generate orders and opportunistic requests and to subsequently place orders and requests and to extract water from a water source.The model can be applied in both regulated and unregulated systems.

...

Figure 1. Irrigator demand model

Image Modified

Target Modifier

...

  • Evapotranspiration - defined in FAO56 as the amount of transpiration that would occur from a reference crop. Procedures for calculating evapotranspiration are documented in FAO56. In addition, the BOM and SILO climate products produce daily estimates for FAO56. Alternatively, pan evapotranspiration and pan factors can be used to define evapotranspiration;
  • Average evapotranspiration (Figure 3) - used when forecasting orders. These options are provided for specifying the average evapotranspiration. You can enter a daily pattern of average evapotranspiration, specify an expression, or you can select to calculate an average evapotranspiration runtime, where the average is calculated as a rolling average of the number of previous model time-steps specified. A value of 14 days would be a good first estimate; and
  • Rainfall and average rainfall are used to specify the actual forecast rainfall. The former can be specified as a constant value, a time series or a function (as shown in Figure 4). The latter is similar to Figure 3.
Figure 2. Irrigator demand model (Climatic parameters)

...

Figure 3. Irrigator demand model (Average evapotranspiration)

Image Added

Figure 4. Irrigator demand model (Rainfall)

Image Modified

Fallow Crop

...

For more information consult the /wiki/spaces/SD35/pages/57872388Irrigator Demand Model page of the Source Scientific Reference Guide. 

Figure 5 - Irrigation demand model (Crop Economics)


Runoff

The supply escape efficiency defines the amount of applied irrigation water that becomes runoff. A value of 0 results in no irrigation runoff; 10% indicates that 10% of the applied irrigation water becomes runoff. You must also specify a return efficiency, which means that the proportion of runoff that is returned to the water user can be stored in the farm storage or returned to the river. By default, both are set to 0 and do not need to be configured.

...