Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

By default, all recorded items are returned, as configured from within the Source application (Running scenarios). Alternatively, you can specify specific items to record by using a command line argument:

...

The next example runs the project from start to finish and puts all recorded values in the file ‘test.csv’. 

Code Block
>RiverSystem.CommandLine.exe -p "C:\ProjectDir\test.rsproj" -o test.csv
Loading 100%
Meta-Parameters:
+ $inflow
-r "Forest\Catchment for node #2\Quick Flow\Flow"
+ Straight-Through Routing\Default Link #1\Upstream Flow Volume
+ Straight-Through Routing\Default Link #1\Downstream Flow Volume
+ Straight-Through Routing\Default Link #1\Mass Balance
+ Inflow\Inflow 1\Upstream Flow Volume
+ Inflow\Inflow 1\Downstream Flow Volume
+ Inflow\Inflow 1\Inflow Volume
+ Inflow\Inflow 1\Mass Balance
+ Gauge\Gauge 2\Upstream Flow Volume
+ Gauge\Gauge 2\Mass Balance
+ Global Expressions\$inflow\Value
Running 100%

...

 

Display option commands

Function

Example

-p, --project

Path to project, or project name on server followed by these optional parameters: scenario within that project, start and end times, name of data input set

-p "projectName.rsproj" or -p "c:\somePath\projectName.rsproj;someScenarioName;1/1/2011;31/12/2011;dry"

-m, --mode

Application mode Client/Server/InProcess.

-m Client or -m Server

-d, --directory

Directory in which to look for projects.

-d "c:\ProjectFiles"

-o, --output

File to save output into. The extension selects the output format based on the standard TIME I/O formats. A directory of the name specifed will be created if the format only supports a single time series.

-o "output.res.csv" for CSV or -o "output.nc" for NetCDF etc.

-r, --results

Which results to return. This can appear multiple times.

Info
iconfalse
Note: By default, all recorded results are saved into the specified output file. When this options is used, it only allows you to reduce the number of results saved out. Requested results must be set to record in the project file. To specify the output file name, save the result to a file with a .res.csv extension. Use the column name for the time series.

-r "someResult" -r "someOtherResult"

-v, --value

Set value of meta-parameter or internal setting.

-v "$metaparam=25", or -v "$anotherMetaParam=2.3"

-s, --step

Number of time-steps to run.

--step 1

-t, --reset

Reset the loaded project.

 

-e, --timeout

Operation timeout for WCF service in seconds.

-e 2000

-b, -baseSIUnits

Ignore units set within project and output base SI units

 

PEST calibration using the command line

PEST (Parameter ESTimation and uncertainty analysis) allows analysis of complex environmental models, and can be used in Source for calibration of catchments. You can use the command line to do calibration and uncertainty in a catchments model. The steps to do the calibration are as follows:

  • Starting with a Source Catchment project file, use the new calibration tool to set up ‘global expressions’ for the parameters of the rainfall runoff models. When defining the metaparameters in the Calibration Wizard, the list of Existing Metaparameters will be used in the parameter file for invoking riversystem.commandline;
  • Turn on any recorders for the hydrological quantities that will be used in the objective function. In step 4 of the Calibration Wizard, choose Manual optimisation and enable Create global expressions for use from an external tool;
  • Save the project;
  • Set up the Riversystem.Commandline input file;
  • Setup the PEST input and template files;
  • Prepare a batch file to invoke the commandline and pre-processors; and
  • Run PEST.

Once the Calibration wizard has been set up, start the command line server (riversystem.commandline -p projectname.rsproj -m server) and then PEST (pest pestcontrolfile.pst).

Batch

runs

running using the command line

You can undertake thousands of different model runs for varying time series inputs. This can be accomplished by running multiple instances on a single server, or over a cluster of servers. 

Batch runs allow you to:

  • Configure the script settings directly;
  • Pass a .cmd settings file to the script; or
  • Run a simple GUI for editing configurations and running them (note that this has not been implemented in Source 3.5.0).

The parameters required for a batch run are summarised in Table 2.

Table 2. Parameters for Local Run Settings

ParameterDescriptionExample
Server.ExeLocation of the RiverSystem.CommandLine.exe that will be run for the server. This should be the same as ClientExe when running locally or a path than can be reached from the server.\\Server\Source\RiverSystem.Commandline.exe
ProjectFileThe template project file that will be run on the server. The file location (including the directory tree) will be copied multiple times and merged with the directories from InputDir.\ExampleMasterProject\Batch.rsproj
ProjectDestinationDirThe working location that should be accessible from the Server and client machines. Files from the InputDir will be copied to this location to change input files.\\Server\Volume_1\ExampleProjectLoadLocation
InputDir

Contains a directory for each run. Files that change should be in these directories, and are copied to the ProjectDestinationDir during a run.

 
OutputDir

The location that output files from runs are saved in the form Result_nameOfDirInInputDir.

 
NumServers

The number of servers that will be started for the job to be distributed over.

 
ServerName

The name of the machine to run the server. Use "localhost" for the local machine. If not "localhost" you must have admin permission on the account for the machine.

 

 

 

Insert excerpt
SD50:Batch running using the command line
SD50:Batch running using the command line
nopaneltrue

Please see /wiki/spaces/SD50/pages/50137610 in the Source community for details and an example.