Note: This is documentation for version 5.0 of Source. For a different version of Source, select the relevant space by using the Spaces menu in the toolbar above
Ownership in Storages - SRG
Overview
Description and rationale
Modelling of ownership at nodes is an essential component of modelling water ownership in Source, as it enables ownership to be tracked at nodes in Source models. The rationale for modelling water ownership, and the overall principles, are discussed in Ownership - SRG. This SRG entry deals with those aspects of ownership that apply to water entering, leaving and residing in a reservoir (storage nodes). Requirements are summarised in Table 1. Rules-Based Ordering - SRG describes how owner orders are created, adjusted and released at storage nodes. More information on the storage node is available in Piecewise Linear approach to Reservoir Routing - SRG.
Table 1. Partner user requirements
No | Requirement |
---|---|
1 | Ownership of water can be assigned, tracked and reassigned. |
1.1 | Ability to specify initial ownership of water at each location (all water must be assigned to an owner) |
1.2 | Ability to specify the transfer of ownership at a location, represented as a node in the river network. |
1.3 | Borrow and payback is supported, where owners share surpluses to owners that cannot meet their requirements, and can be paid back later. |
1.4 | In every model component, ownership is conserved when it is not explicitly transferred or exchanged, i.e. the following volume equation holds for each owner o: ΔStorageo = Inflowo - Outflowo - Diversiono - Losso + Gaino + Borrowedo - Lento |
2 | Ownership tracking works for a range of time steps e.g. sub-daily, daily. |
3 | Delivery of each owner’s orders may be constrained by their share of inflow and storage volume, and delivery capacity. |
4 | The equation governing ownership in storages is for an owner o: ΔStorageo = Inflowo - RegulatedReleaseo - Cededo - FixedLosso - ProportionalLosso - InternalSpillo - ExternalSpillo + Borrowedo - Lento |
5 | Owners can cede (give) water to other owners in a storage. |
5.1 | The modeller can configure rules that determine when ceding is to take place and how much water to cede from one owner to another owner. |
6 | Storage losses and gains (evaporation, precipitation, groundwater infiltration) are shared between owners according to user-configured rules. |
6.1 | Storage losses and gains can be shared proportionally, or according to fixed ratio |
6.2 | When storage losses and gains are shared proportionally, owners are assigned a share in proportion to the volume of their water in storage. |
6.3 | When storage losses and gains are shared in a fixed ratio, the modeller configures each owner’s percentage share |
7 | Owners are assigned fixed shares of storage capacity in which to store their water. |
7.1 | The modeller can configure each owner’s share of storage capacity. |
8 | The modeller can configure whether ‘internal spilling’ between owners occurs within a storage. |
8.1 | When ‘internal spilling’ is configured, owners must transfer the volume of their water that is in excess of their share of storage capacity (the internal spill) to all other owners with ‘airspace’. |
8.2 | When ‘internal spill’ is transferred from an owner, every other owner receives a share in proportion to their share of storage capacity, but limited by their ‘airspace’. |
9 | An owner’s share of external spill (release volume in excess of demand) is determined by their share of start of time step storage volume, inflow, regulated release and storage capacity. |
10 | Storage owner shares can be temporarily overridden and restored later (e.g. Lake Menindee). |
10.1 | When storage shares are overridden, they are reassigned to a single owner, and all inflows, losses/gains, releases and spills belong to this owner. |
10.2 | The modeller can configure the conditions under which the override occurs, and the owner to which shares are reassigned. |
10.3 | When storage shares are restored after an override period, the borrow accounts must be restored to their pre-override balance. |
11 | Owners are assigned a share of the capacity of each of the storage’s outlet paths according to user configured rules. |
11.1 | Outlet path capacity can be shared proportionally, or according to fixed ratio |
11.2 | When outlet path capacity is shared proportionally, owners are assigned a share in proportion to the volume of their water in storage. |
Scale
The concept of spatial scale in the context of Ownership relates to the fact that it can apply to all or part of the length of a river system. Ownership status can be updated as often as at every model time step, or less often if required.
Principal developer
This version of modelling ownership at storage nodes has been developed by eWater CRC for Source.
Scientific Provenance
Ownership has been modelled in predecessors to Source, such as IQQM and MSM, for many years. The concepts in these models have been updated and enhanced to suit the needs of Source.
Version
Source v3.8.8.
Dependencies
In addition to the dependencies applicable to storage nodes, the minimum requirement is that there should be at least two water users and an Ownership system in the river system being modelled.
Availability/conditions
Automatically included with Source.
Structure & processes
Assumptions
Table 2. Assumptions and Constraints
No | Assumption/Constraint |
---|---|
1 | Owners cannot have a negative share of water in storage or transit |
2 | The sum of each owners’ share of flow or storage volume at a model component will equal the total flow or storage volume for the corresponding component. |
3 | Owners cannot cede more water than the current storage volume. |
4 | The direction of flow on a wetland link connected to a storage is the direction of net flow volume over the time step. |
5 | All owners in an ownership system possess a share of the reservoir’s storage capacity. |
Definitions
Airspace | The difference between the current storage capacity and the volume of water in storage. For an owner: The difference between an owner’s current storage capacity and their volume of water in storage. |
Ceding | Where an owner gives up water to another owner. |
Dead storage | Capacity of a reservoir that is below the minimum operating level and cannot under normal circumstances be released. |
External spill | Release from storage in excess of that required to meet downstream requirements. |
Full supply level (FSL) | The maximum normal operating level of a reservoir behind a dam. Sometimes the FSL may be set lower than the maximum physical capacity of the dam for management reasons. |
Internal spill | Occurs when an owner’s volume of water in storage exceeds their current storage capacity and the excess is transferred to the other owners possessing airspace. |
Regulated release | The volume of water released to meet downstream requirements. |
Spiller | Owner whose share of water in storage exceeds their share of capacity to store it. |
Storage | Volume of water stored in the reservoir (dam or weir). |
Storage capacity | Volume in storage when the reservoir is at the full supply level. For an owner: The owner’s share of the volume in storage when the reservoir is at the full supply level. |
Ownership continuity equation
Ownership in reservoirs is governed by the continuity equation, in which each owner’s share of water is conserved. Ownership of water is changed only in the following set of cases:
- Water is ceded to other owners according to rules configured by the modeller.
- An owner does not have sufficient storage capacity to hold its water, so it is internally spilled to other owners. (The modeller may opt to disable this process where it is not required).
- Water is borrowed or lent to other owners so that demand can be met. Borrow accounts are used to track this lending, so that water is later paid back either at the nominated payback storage, or via the resource assessment process (as described in Borrow and Payback - SRG).
Ownership can also be temporarily suspended. When this occurs, all water in the reservoir is assigned to a single owner, and the borrow and payback processes are turned off.
An owner’s volume of water in storage is adjusted for their share of inflows, regulated releases, external and internal spills, lateral losses and gains, and flows along wetland links. Inflows may be from upstream or via wetland links. Regulated release ownership is determined by each owner’s downstream order.
Lateral losses and gains include rainfall, evaporation and groundwater infiltration. These fluxes are categorised into those that are shared in proportion to the share of water stored, or according to fixed ratio. The user configures which of the lateral fluxes fall into each category (fixed/proportional). Wetland link flows are treated as fixed losses (see Ownership in Wetlands - SRG for more information).
Therefore, for an owner, i, the continuity equation gives for a time step:
Equation 1 |
---|
where:
Vi2 - Owner ’s volume of water in the reservoir this time step.
Vi1 - Owner ’s volume of water in the reservoir last time step.
Ii - Volume of inflow this time step belonging to owner i.
Ci - Net volume of water ceded by owner i this time step to all other owners, negative if this owner has ceded less water to other owners than received.
Pi - Proportional loss attributed to owner i, negative if a gain.
Fi - Fixed loss attributed to owner i, negative if a gain.
ISi - Net internal spill of owner i, negative if spill into owner’s share.
ESi - External spill for owner i.
Bi - Total borrowed from other owners by owner i, negative if the owner is lending to other owners.
Ri - Volume of regulated water released this time step for owner i.
This methodology uses an implicit (backward) Eulerian numerical scheme which implies that fluxes that are a function of the state of the reservoir are a function of the end of time step value (V2).
The modeller may disable internal spills, so this element may be left out of the equation.
Each owner’s inflow and last time step storage is known at the start of the reservoir ownership calculations. Shares or functions configured by the modeller determine owner fixed losses and volumes ceded or received (noting that owners cannot cede more than the current storage volume). The remaining parts of the equation to be calculated are the owner’s borrow, internal spill (where relevant), external spill and proportional loss.
Borrow and payback
Owners with insufficient water in the reservoir to meet their release requirements can borrow it from other owners with surplus water. Payback occurs in a reservoir only when it has been configured as a ‘payback storage’, i.e. it:
- has a local borrow and payback system that tracks borrow in the reservoir
or
- is the ‘reconciliation’ storage for the ‘global’ borrow and payback system used to track borrow within the ownership system governing the river/section of river the reservoir forms part of.
When the reservoir is a ‘payback storage’, owners with water surplus to their release requirements will pay back any water they borrowed earlier by reassigning part or all of the surplus to their creditor(s).
Borrow calculations
Knowing that when an owner draws its share of the storage down to zero, its share of the proportional losses will also be zero, for each owner, i, the maximum volume of water it can release this time step without relying on borrowing (by setting Bi = 0) can be calculated:
Equation 2 |
---|
If the reservoir is empty, this equation is modified to account for proportional gains (such as rainfall) that could be released, or that have dried up the reservoir over the period considered:
Equation 3 |
---|
where:
ri - Owner i’s ratio share of the reservoir’s storage capacity.
P - Total proportional loss, negative if a gain.
From this, surplus and deficit release capacities can be calculated for each owner:
Equation 4 |
---|
Equation 5 |
---|
Using the borrow method described in Borrow and Payback - SRG Bi for each owner can be calculated. Any owner that had to borrow will have Vi2 = 0.
Bi = Borrowedi - Lenti
Payback calculations
If this reservoir is a payback storage, shares of storage are adjusted as owners with the capacity to do it, pay back water that they borrowed earlier. The surplus release capacities are re-evaluated but this time water already lent is considered:
Equation 6 |
---|
Equation (6) returns a value of zero for owners that had to borrow water. It is only necessary to calculate the repayment for owners with a positive surplus that have previously borrowed from other owners (Surplusi > 0, |BPSystem.NetBorrow(i, OtherOwner)| > 0 ). Borrow and Payback - SRG describes distribution systems and priority levels.
Payback is done at each priority level in order from highest to lowest:
At a given priority level, pl, for each owner, i, that has a Surplusi > 0, the steps are:
Accumulate amount the owner owes other owners at the priority level:
Equation 7 - If the owner has borrowed from any other at the priority level ( (CanPayback(pl, i) > 0):
Calculate the ratio to limit the owner’s payback to their current ability to repay:
Equation 8 - For every other owner OtherOwner that shares with owner i at the priority level:
Calculate the payback to the other owner using the ratio above
Equation 9 Update the borrow record for the payback to the other owner
Equation 10 Equation 11 Adjust current time step borrow totals for the payback:
Equation 12 Equation 13 Update the surplus remaining to be shared at the next priority level down:
Equation 14
Forfeiture of credit
If a reservoir is a payback storage, a check is made to ensure that no owner’s credit owing to them exceeds their capacity to store it. If any owner has more water owed to them than they have remaining airspace, the excess is forfeited back to the debtors in order of priority. This methodology is similar to that used for calculating payback, but in this case the forfeits run in the opposite direction to the repayments.
Each owner’s current airspace can be calculated as:
Equation 15 |
---|
The total credit owed to an owner i is:
Equation 16 |
---|
The maximum volume each owner will be required to forfeit:
Equation 17 |
---|
If any owner’s value of MaxForfeiti is greater than zero, there is credit that must be forfeited.
The process to forfeit credit is done at each priority level, in order from highest to lowest:
At a priority level, for each ‘creditor’ owner i that has a MaxForfeiti > 0, the steps are:
Accumulate the amount owed to the creditor by other owners sharing at the priority level:
Equation 18 - If the creditor has an amount owing at this priority level (Owedi > 0):
Calculate the amount of credit forfeited to each other owner at the priority level - this is proportional to the other owner’s share of the total owed to this owner at the priority level:
Equation 19 Adjust the borrow record for the creditor and their debtors for the amount forgone:
Equation 20 Equation 21 Update the amount left to forfeit at the next priority level down:
Equation 22
Spill calculations
Each owner is entitled to use a fixed proportion** of the storage capacity of a reservoir (ri) which means that at any time its storage cannot exceed:
Equation 23 |
---|
where:
Vimax - Owner i’s maximum allowed volume of water in the reservoir this time step.
ri - Owner i’s ratio share of reservoir storage capacity.
Vmax - Storage capacity of reservoir.
V2 - Storage volume of reservoir this time step.
The maximum function in equation (23) is used to cover the cases where the reservoir is surcharged. If the reservoir is currently subject to a pre-release (A pre-release can be releases made for flood mitigation or in the case of Dartmouth Dam, for example, those made through the power station when the storage is above a defined target level.) then the storage capacity is considered to be the current storage volume and equation (23) becomes:
Equation 24 |
---|
For any owner, i, to be spilling Vi2 = Vimax otherwise the owner would still possess airspace and would not be spilling, and also the current storage volume cannot be greater than the maximum by definition.
Identifying spilling owners
Before each owner’s share of spills can be determined, it is necessary to determine which owners will spill. Where the spill calculation returns a negative value, owners can receive internal spill, while a positive value indicates that the owner is spilling (has filled their storage share).
Case when there is net proportional loss (P ≥ 0)
This case applies if there is a net proportional loss from a non-empty reservoir, or on the unusual case of an empty reservoir that spills over the time step due to net proportional gain. Equation (1) is rearranged to give an expression for the volume of water that can spill (internally and externally) from an owner’s capacity share:
Equation 25 |
---|
Case when there is net proportional gain (P < 0)
Where there is a net gain of fluxes that are proportionally shared, allowance is made for the fact that some owners may have their share of the storage filled and the excess has to be given to the other owners. Firstly, where each owner’s storage would be without the gain is estimated, making sure that this estimate does not exceed its current storage capacity:
Equation 26 |
---|
where:
The superscript j denotes owners with capacity to receive spills.
Proportional gain P is distributed in an iterative process. Initially the proportional gain remaining to be distributed (Prem) equals the total P, and every owner’s spill Spilli is zero. Prem is distributed until there are no more owners that will spill. This process is outlined below:
A total of the estimated unassisted storage volumes is calculated:
For each owner not already identified as spilling (Spillj ≤ 0) we calculate an initial estimate of their spill volume totals:
Equation 27 If an owner is discovered to be spilling (Spillj > 0), the remaining proportional gain is updated:
Equation 28 And a final estimate of total spill calculated:
Equation 29 - If during this pass any owners are discovered to be spilling then it is necessary to return to equation (27) and keep repeating the process until no more spilling owners are discovered.
When the process is finished equation (30) is evaluated for those owners found to be not spilling.
Calculating internal and external spill shares
The calculations in previous sections established which owners are spillers when proportional gains and losses are taken into account. The next step is to determine the internal (between owners) and external (leaving the reservoir) components of the spill. Based on the calculations in the previous sections the total spill is:
Equation 30 |
---|
The total external spill is the total outflow O minus the total release for all owners:
Equation 31 |
---|
Case where internal spills are disabled
If internal spill is disabled the internal spill volume is zero (ISi = 0). The ownership of the external spills is set based on how much each owner would spill in total if internal spill was operating:
Equation 32 |
---|
Case where internal spills are enabled
When internal spill is active, the total internal spill is the difference between the total and external spills:
Equation 33 |
---|
The ratio of external to total spill is:
Equation 34 |
---|
So, for an owner i, the external spill is:
Equation 35 |
---|